Browse ModelsWavespeed AIWan 2.2 T2V 720p LoRA Ultra Fast

Wan 2.2 T2V 720p LoRA Ultra Fast

Wan 2.2 T2V 720p LoRA Ultra Fast

Playground

Try it on WavespeedAI!

Ultra-fast Wan 2.2 Text-to-Video generates unlimited 720p AI videos with custom LoRAs for personalized styles. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

Wan 2.2 Text-to-Video 720p LoRA Ultra Fast

Generate customized 720p HD videos from text at blazing speed with full LoRA support. This speed-optimized model delivers high-quality output with three LoRA slots for style control — perfect for rapid iteration, testing LoRA combinations, and high-volume production.

Need maximum quality? Try Wan 2.2 T2V 720p LoRA for standard processing with premium output.

Why It Looks Great

  • Ultra-fast generation: Speed-optimized for rapid turnaround without sacrificing quality.
  • Pure text-to-video: Generate complete videos from descriptions alone — no images needed.
  • LoRA support: Apply up to 3 custom LoRAs each for standard, high-noise, and low-noise stages.
  • 720p HD output: Sharp, professional-quality video suitable for most use cases.
  • Landscape & portrait: Supports both 1280×720 and 720×1280 orientations.
  • Negative prompt support: Exclude unwanted elements for precise control.
  • Safety Checker: Optional content filtering for appropriate output.

Parameters

ParameterRequiredDescription
promptYesText description of the scene, action, and atmosphere you want.
negative_promptNoElements to avoid in the generated video.
sizeNoOutput dimensions: 1280×720 (landscape) or 720×1280 (portrait). Default: 1280×720.
durationNoVideo length: 5 or 8 seconds. Default: 5.
lorasNoStandard LoRA adapters to apply (up to 3).
high_noise_lorasNoLoRAs applied during high-noise denoising stages (up to 3).
low_noise_lorasNoLoRAs applied during low-noise denoising stages (up to 3).
seedNoRandom seed for reproducibility. Use -1 for random.
Enable Safety CheckerNoToggle content safety filtering.

How to Use

  1. Write your prompt — describe the scene, characters, motion, and atmosphere in detail.
  2. Add negative prompt (optional) — specify elements to exclude.
  3. Choose size — select landscape (1280×720) or portrait (720×1280) orientation.
  4. Set duration — choose 5 or 8 seconds.
  5. Add LoRAs (optional) — click ”+ Add Item” to include custom LoRA adapters.
  6. Set seed (optional) — for reproducible results.
  7. Run — click the button to generate.
  8. Download — preview and save your video.

Pricing

Per 5-second billing based on duration.

DurationCalculationCost
5 seconds5 ÷ 5 × $0.15$0.15
8 seconds8 ÷ 5 × $0.15$0.24

Understanding LoRA Options

This model provides three different LoRA slots that affect different stages of the generation process:

LoRA TypeWhen AppliedBest ForMax Count
lorasThroughout generationGeneral style, character consistency3
high_noise_lorasEarly denoising (high noise)Overall composition, major style elements3
low_noise_lorasLate denoising (low noise)Fine details, textures, finishing touches3

Size Options

SizeOrientationBest For
1280×720LandscapeYouTube, presentations, desktop viewing
720×1280PortraitTikTok, Instagram Reels, Stories, mobile

Best Use Cases

  • Rapid LoRA Testing — Quickly iterate on LoRA combinations to find the perfect mix.
  • High-Volume Production — Generate large batches of stylized content efficiently.
  • Style Exploration — Experiment with different visual aesthetics at speed.
  • Social Media Content — Create platform-optimized HD videos with custom styles.
  • Concept Prototyping — Test ideas quickly before committing to slower, higher-quality generation.

Example Prompts

  • “Anime girl walking through cherry blossom garden, petals falling, soft pink lighting, peaceful mood”
  • “Epic fantasy battle scene, dragons and knights, dramatic lighting, cinematic action”
  • “Cozy cafe interior, steam rising from coffee, rain on windows, lo-fi aesthetic”
  • “Futuristic robot dancing in neon-lit club, holographic effects, cyberpunk style”
  • “Serene mountain lake at sunrise, mist rolling over water, nature documentary quality”

How to Use LoRAs

For detailed guides on using and training custom LoRAs:

Model Comparison

ModelCost (5s)SpeedBest For
T2V 720p LoRA Ultra Fast$0.15FastRapid iteration, testing, high-volume
T2V 720p LoRA$0.20+StandardMaximum quality with LoRA support

Pro Tips for Best Results

  • Ultra Fast is ideal for testing — iterate quickly, then regenerate favorites with standard models.
  • Use high_noise_loras for major style changes, low_noise_loras for subtle refinements.
  • Don’t overload with LoRAs — sometimes 1-2 well-chosen LoRAs work better than many.
  • Match orientation to platform: portrait for TikTok/Reels, landscape for YouTube.
  • Keep the same seed when comparing different LoRA combinations.
  • Processing remains fast even with multiple LoRAs applied.

Notes

  • Duration options are 5 or 8 seconds only.
  • Each LoRA slot supports up to 3 LoRAs.
  • Enable Safety Checker for content that will be publicly shared.
  • Ultra Fast prioritizes speed — for maximum quality, use standard variants.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.2/t2v-720p-lora-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "size": "1280*720",
    "duration": 5,
    "seed": -1
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
promptstringYes-The positive prompt for the generation.
negative_promptstringNo-The negative prompt for the generation.
sizestringNo1280*7201280*720, 720*1280The size of the generated media in pixels (width*height).
durationintegerNo55, 8The duration of the generated media in seconds.
lorasarrayNomax 3 itemsList of LoRAs to apply (max 3).
loras[].pathstringYes-Path to the LoRA model
loras[].scalefloatYes-0.0 ~ 4.0Scale of the LoRA model
high_noise_lorasarrayNo--List of high noise LoRAs to apply (max 3).
low_noise_lorasarrayNo--List of low noise LoRAs to apply (max 3).
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.