Vidu Text To Video
Playground
Try it on WavespeedAI!Vidu Text to Video generates high-quality 720p videos with exceptional visual quality and motion diversity
Features
🎬 Vidu Text-to-Video
Vidu Text-to-Video transforms your text prompts into high-quality, cinematic 720p videos — complete with expressive motion, dynamic lighting, and natural camera movement. Built for creators, storytellers, and developers, Vidu delivers smooth, detailed, and visually coherent motion sequences directly from text input.
🌟 Why it looks amazing
- Cinematic generation: produces film-like shots with realistic motion and depth of field.
- High temporal consistency: ensures clean transitions with minimal flicker or distortion.
- Motion diversity: supports subtle gestures, expressive movement, and camera motion for natural flow.
- Text-guided direction: interprets complex scene descriptions with strong semantic alignment.
- 720p output: optimized for crisp detail and creative flexibility.
⚙️ Parameters and Controls
-
prompt — describe your scene (e.g., “A cat walking through a neon-lit alley at night”).
-
movement_amplitude — control motion strength:
auto(default): model decides best motion level.small: subtle, gentle movements (good for portraits or still scenes).medium: balanced camera and subject motion.large: cinematic, dramatic, or action-heavy movement.
-
seed — set for reproducible results (leave blank for random).
💰 Pricing
| Resolution | Duration | Cost per Clip |
|---|---|---|
| 720p | 4s | $0.20 |
🚀 How to Use
- ✍️ Write your prompt describing the scene or action.
- 🎥 Choose your movement amplitude (auto, small, medium, or large).
- 🎲 Optionally set a seed for reproducibility.
- ▶️ Click Run ($0.20) to generate your video.
💡 Pro Tips
- Use vivid verbs and adjectives for better motion understanding.
- For subtle portraits, pick small amplitude; for dynamic shots, choose large.
- Keep your prompt concise but descriptive — focus on subject, setting, and style.
- Adjust seed values to explore different visual interpretations of the same prompt.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/vidu/text-to-video" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"movement_amplitude": "auto"
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| prompt | string | Yes | - | The positive prompt for the generation. | |
| movement_amplitude | string | No | auto | auto, small, medium, large | The movement amplitude of objects in the frame. Defaults to auto, accepted value: auto small medium large. |
| seed | integer | No | - | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |