Browse ModelsWavespeed AIFlux Dev LoRA Ultra Fast

Flux Dev LoRA Ultra Fast

Flux Dev LoRA Ultra Fast

Playground

Try it on WavespeedAI!

Ultra-fast FLUX.1 [dev] endpoint with LoRA support for high-quality image generation, personalization, and brand/style adaptation. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

FLUX Dev LoRA Ultra Fast — wavespeed-ai/flux-dev-lora-ultra-fast

FLUX Dev LoRA Ultra Fast is a high-speed image generation and editing model that supports applying up to three LoRAs in a single run. It’s built for rapid iteration: generate new images from a prompt, or guide results with an input image (image-to-image) and an optional mask for localized edits. With LoRA stacking, you can quickly dial in style, character identity, or product aesthetics while keeping latency and cost low.

Key capabilities

  • Text-to-image generation with fast turnaround
  • Image-to-image generation for guided edits and variations
  • Masked editing (inpainting-style) for localized changes
  • LoRA support: add up to 3 LoRAs per run
  • Adjustable strength for how strongly the input image is preserved
  • Custom output size, seed control, and standard image formats

Use cases

  • Rapid style exploration using one or more LoRAs (photoreal, illustration, anime, etc.)
  • Character consistency by stacking identity + style LoRAs
  • Product mockups: swap materials/colors and keep composition stable
  • Portrait retouching or wardrobe/background changes with a mask
  • High-volume generation for ads, thumbnails, and creative testing

Pricing

OutputPrice
Per image$0.006

Inputs

  • prompt (required): what to generate or how to edit
  • image (optional): source image for image-to-image
  • mask_image (optional): edit region mask (for localized edits)
  • loras (optional): list of LoRA items (up to 3)

Parameters

  • strength: how much to follow the input image (higher = more change; lower = more preservation)
  • loras[].path: LoRA identifier (owner/model) or a public .safetensors URL
  • loras[].scale: LoRA weight (typical range ~0.6–1.2 depending on LoRA)
  • width / height: output size
  • num_inference_steps: sampling steps
  • guidance_scale: prompt adherence strength
  • num_images: number of images to generate per run
  • seed: random seed (-1 for random; set for reproducible results)
  • output_format: jpeg / png / webp, etc.
  • enable_base64_output: return BASE64 instead of URL (API only)

Prompting tips

  • If you’re stacking LoRAs, keep the base prompt clean and let LoRAs do the heavy lifting.
  • For edits, describe the change explicitly and keep “what stays the same” implicit via the input image.
  • For text rendering in images, keep on-image text short and specify placement/material.

Example prompts

  • Super realism, ultra high-resolution photograph, cinematic lighting, shallow depth of field, shot on a Sony A7III, natural skin texture, sharp eyes, soft bokeh background.
  • Edit: change the outfit to a light gray sweater and gold thin-rimmed glasses, keep the same face and hairstyle, realistic studio lighting.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-dev-lora-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "strength": 0.8,
    "loras": [
        {
            "path": "strangerzonehf/Flux-Super-Realism-LoRA",
            "scale": 1
        }
    ],
    "size": "1024*1024",
    "num_inference_steps": 28,
    "guidance_scale": 3.5,
    "num_images": 1,
    "seed": -1,
    "output_format": "jpeg",
    "enable_base64_output": false
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
promptstringYes-The positive prompt for the generation.
imagestringNo-
mask_imagestringNo-The mask image tells the model where to generate new pixels (white) and where to preserve the original image (black). It acts as a stencil or guide for targeted image editing.
strengthnumberNo0.80.01 ~ 1.00Strength indicates extent to transform the reference image.
lorasarrayNomax 3 itemsList of LoRAs to apply (max 3).
loras[].pathstringYes-Path to the LoRA model
loras[].scalefloatYes-0.0 ~ 4.0Scale of the LoRA model
sizestringNo1024*1024256 ~ 1536 per dimensionThe size of the generated media in pixels (width*height).
num_inference_stepsintegerNo281 ~ 50The number of inference steps to perform.
guidance_scalenumberNo3.50.0 ~ 20.0The guidance scale to use for the generation.
num_imagesintegerNo11 ~ 4The number of images to generate.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.
output_formatstringNojpegjpeg, png, webpThe format of the output image.
enable_base64_outputbooleanNofalse-If enabled, the output will be encoded into a BASE64 string instead of a URL. This property is only available through the API.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.