Wan 2.2 Image LoRA Trainer
Playground
Try it on WavespeedAI!Train custom Wan 2.2 LoRA models 10x faster. Style training, character training, object training. From concept to model in minutes, not hours. Upload a ZIP file containing images to start!
Features
Wan 2.2 image LoRA Trainer
Wan 2.2 LoRA Trainer is a high-performance custom model training service for the Wan 2.2 text-to-video generation model. Train personalized LoRA (Low-Rank Adaptation) models 10x faster than traditional methods, enabling custom styles, characters, and objects for video generation.
Training Architecture
The trainer leverages Wan 2.2’s innovative MoE (Mixture of Experts) architecture, producing two specialized LoRA models:
- high_noise_lora: Optimized for high-noise denoising timesteps, handling initial structure and composition
- low_noise_lora: Optimized for low-noise denoising timesteps, refining details and final output quality
This dual-model approach ensures superior training efficiency and generation quality across all denoising stages.
Training Process
- Data Upload: Upload a ZIP file containing your training images
- Automatic Processing: The system automatically processes and optimizes your dataset
- Dual Model Training: Simultaneously trains both high_noise_lora and low_noise_lora models
- Model Delivery: Receive two specialized LoRA models ready for video generation
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.2-image-lora-trainer" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"data": "",
"trigger_word": "p3r5on",
"steps": 1000,
"learning_rate": 0.0004,
"lora_rank": 32
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
Parameter | Type | Required | Default | Range | Description |
---|---|---|---|---|---|
data | string | Yes | - | - | To train a WAN T2V LoRA, you need to upload a zip file containing at least 10 images. In addition to images the archive can contain text files with captions. Each text file should have the same name as the image file it corresponds to. |
trigger_word | string | No | p3r5on | - | The phrase that will trigger the model to generate an video. |
steps | integer | No | 1000 | 1000 ~ 10000 | Number of steps to train the LoRA on. |
learning_rate | number | No | 0.0004 | 0.00000 ~ 1.00000 | |
lora_rank | integer | No | 32 | 1 ~ 128 |
Response Parameters
Parameter | Type | Description |
---|---|---|
code | integer | HTTP status code (e.g., 200 for success) |
message | string | Status message (e.g., “success”) |
data.id | string | Unique identifier for the prediction, Task Id |
data.model | string | Model ID used for the prediction |
data.outputs | array | Array of URLs to the generated content (empty when status is not completed ) |
data.urls | object | Object containing related API endpoints |
data.urls.get | string | URL to retrieve the prediction result |
data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
data.status | string | Status of the task: created , processing , completed , or failed |
data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
data.error | string | Error message (empty if no error occurred) |
data.timings | object | Object containing timing details |
data.timings.inference | integer | Inference time in milliseconds |
Result Query Parameters
Result Request Parameters
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
id | string | Yes | - | Task ID |
Result Response Parameters
Parameter | Type | Description |
---|---|---|
code | integer | HTTP status code (e.g., 200 for success) |
message | string | Status message (e.g., “success”) |
data | object | The prediction data object containing all details |
data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
data.model | string | Model ID used for the prediction |
data.outputs | array | Array of URLs to the generated content (empty when status is not completed ) |
data.urls | object | Object containing related API endpoints |
data.urls.get | string | URL to retrieve the prediction result |
data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
data.status | string | Status of the task: created , processing , completed , or failed |
data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
data.error | string | Error message (empty if no error occurred) |
data.timings | object | Object containing timing details |
data.timings.inference | integer | Inference time in milliseconds |