Wan 2.1 V2V 480p LoRA
Playground
Try it on WavespeedAI!WAN 2.1 V2V 480p LoRA generates unlimited 480p video-to-video edits with custom LoRA support for tailored styles. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.
Features
Wan 2.1 V2V 480p LoRA — wavespeed-ai/wan-2.1/v2v-480p-lora
Wan 2.1 V2V 480p LoRA is a video-to-video model designed for prompt-guided edits while preserving the original motion and timing of an input video. Upload a source video, describe what should change, and tune the edit strength to control how closely the output follows the original footage. It supports up to 3 LoRAs to enforce a consistent style, character look, or branded aesthetic across the transformed clip.
Key capabilities
- Video-to-video transformation anchored to an input video (480p output)
- Prompt-guided edits while keeping motion continuity and pacing
- Strength control to balance preservation vs. transformation
- LoRA support (up to 3) for stable style/identity steering
- Fine control over motion behavior via flow_shift
Use cases
- Restyle a video while preserving the original motion (cinematic, anime, illustration looks)
- Apply a “house style” consistently across multiple clips using LoRAs
- Enhance mood and lighting (golden hour, noir, neon) without re-animating motion
- Brand-safe content refresh: keep composition, change textures/colors/details
- Creative remixing for social clips and rapid iteration
Pricing
| Duration | Price per video |
|---|---|
| 5s | $0.20 |
| 10s | $0.30 |
Inputs
- video (required): source video to transform
- prompt (required): what to change and how the result should look
- negative_prompt (optional): what to avoid (artifacts, jitter, unwanted elements)
- loras (optional): up to 3 LoRA items for style/identity steering
Parameters
- num_inference_steps: sampling steps
- duration: output duration (seconds)
- strength: how strongly to transform the input video (lower = preserve more; higher = change more)
- guidance_scale: prompt adherence strength
- flow_shift: motion/flow behavior tuning
- seed: random seed (-1 for random; fixed for reproducible results)
LoRA (up to 3 items):
-
loras: list of LoRA entries (max 3)
- path: owner/model-name or a direct .safetensors URL
- scale: LoRA strength
Prompting guide (V2V)
To get stable edits, write prompts that separate “preserve” from “change”:
Template: Keep the same camera motion and timing from the input video. Change [style/lighting/wardrobe/environment]. Keep faces natural and consistent. Avoid flicker and warping.
Example prompts
- Keep the original motion and composition. Make the video candid and cinematic with warm sunlight, natural skin texture, gentle film grain, and soft depth of field.
- Preserve timing and camera movement. Restyle the scene into a clean anime look with crisp edges and consistent shading, no flicker.
- Keep the same scene and people. Change the color grade to sunset golden hour, add subtle lens flare, maintain realistic shadows.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1/v2v-480p-lora" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"loras": [
{
"path": "motimalu/wan-flat-color-v2",
"scale": 1
}
],
"num_inference_steps": 30,
"duration": 5,
"strength": 0.9,
"guidance_scale": 5,
"flow_shift": 3,
"seed": -1
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| video | string | Yes | - | The video for generating the output. | |
| prompt | string | Yes | - | ||
| loras | array | No | max 3 items | List of LoRAs to apply (max 3). | |
| loras[].path | string | Yes | - | Path to the LoRA model | |
| loras[].scale | float | Yes | - | 0.0 ~ 4.0 | Scale of the LoRA model |
| negative_prompt | string | No | - | The negative prompt for the generation. | |
| num_inference_steps | integer | No | 30 | 1 ~ 40 | The number of inference steps to perform. |
| duration | integer | No | 5 | 5 ~ 10 | The duration of the generated media in seconds. |
| strength | number | No | 0.9 | 0.10 ~ 1.00 | |
| guidance_scale | number | No | 5 | 0.00 ~ 20.00 | The guidance scale to use for the generation. |
| flow_shift | number | No | 3 | 1.0 ~ 10.0 | The shift value for the timestep schedule for flow matching. |
| seed | integer | No | -1 | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | string | Array of URLs to the generated content (empty when status is not completed). |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |