Wan 2.1 V2V 480p LoRA Ultra Fast
Playground
Try it on WavespeedAI!Wan 2.1 V2V 480p is an ultra-fast video-to-video model that generates unlimited AI videos and supports custom LoRAs for personalization. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.
Features
Wan 2.1 V2V 480p LoRA Ultra Fast — wavespeed-ai/wan-2.1/v2v-480p-lora-ultra-fast
Wan 2.1 V2V 480p LoRA Ultra Fast is a speed-optimized video-to-video model for prompt-guided edits while preserving the original motion and timing of an input video. Upload a source video, describe what should change, and tune strength to control how closely the output follows the original footage. It supports up to 3 LoRAs to enforce a consistent style, character look, or branded aesthetic—now with lower latency for rapid iteration.
Key capabilities
- Ultra-fast video-to-video transformation anchored to an input video (480p output)
- Prompt-guided edits while keeping motion continuity and pacing
- Strength control to balance preservation vs. transformation
- LoRA support (up to 3) for stable style/identity steering
- Fine control over motion behavior via flow_shift
Use cases
- Rapid V2V restyling for social clips and creative iteration
- Apply a consistent “house style” across multiple clips using LoRAs
- Lighting/mood changes (cinematic grade, neon, golden hour) without re-animating motion
- Brand-safe refresh: keep composition and timing, update textures/colors/details
- Quick A/B testing by changing prompts, LoRAs, or seed
Pricing
| Duration | Price per video |
|---|---|
| 5s | $0.125 |
| 10s | $0.1875 |
Inputs
- video (required): source video to transform
- prompt (required): what to change and how the result should look
- negative_prompt (optional): what to avoid (artifacts, jitter, unwanted elements)
- loras (optional): up to 3 LoRA items for style/identity steering
Parameters
- num_inference_steps: sampling steps
- duration: output duration (seconds)
- strength: how strongly to transform the input video (lower = preserve more; higher = change more)
- guidance_scale: prompt adherence strength
- flow_shift: motion/flow behavior tuning
- seed: random seed (-1 for random; fixed for reproducible results)
LoRA (up to 3 items):
-
loras: list of LoRA entries (max 3)
- path: owner/model-name or a direct .safetensors URL
- scale: LoRA strength
Prompting guide (V2V)
Write prompts that explicitly separate preservation from transformation:
Template: Keep the same camera motion and timing from the input video. Change [style/lighting/environment]. Keep faces natural and consistent. Avoid flicker and warping.
Example prompts
- Keep the original motion and composition. Apply a candid, cinematic look with warm sunlight, soft depth of field, and natural skin texture.
- Preserve timing and camera movement. Restyle into a clean anime look with consistent shading and no flicker.
- Keep the same scene and people. Change the color grade to sunset golden hour, add subtle lens flare, maintain realistic shadows.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1/v2v-480p-lora-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"loras": [
{
"path": "motimalu/wan-flat-color-v2",
"scale": 1
}
],
"num_inference_steps": 30,
"duration": 5,
"strength": 0.9,
"guidance_scale": 5,
"flow_shift": 3,
"seed": -1
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| video | string | Yes | - | The video for generating the output. | |
| prompt | string | Yes | - | ||
| loras | array | No | max 3 items | List of LoRAs to apply (max 3). | |
| loras[].path | string | Yes | - | Path to the LoRA model | |
| loras[].scale | float | Yes | - | 0.0 ~ 4.0 | Scale of the LoRA model |
| negative_prompt | string | No | - | The negative prompt for the generation. | |
| num_inference_steps | integer | No | 30 | 1 ~ 40 | The number of inference steps to perform. |
| duration | integer | No | 5 | 5 ~ 10 | The duration of the generated media in seconds. |
| strength | number | No | 0.9 | 0.10 ~ 1.00 | |
| guidance_scale | number | No | 5 | 0.00 ~ 20.00 | The guidance scale to use for the generation. |
| flow_shift | number | No | 3 | 1.0 ~ 10.0 | The shift value for the timestep schedule for flow matching. |
| seed | integer | No | -1 | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | string | Array of URLs to the generated content (empty when status is not completed). |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |