Wan 2.1 14b LoRA Trainer
Playground
Try it on WavespeedAI!Train custom Wan 2.1 LoRA models 10x faster. Style training, character training, object training. From concept to model in minutes, not hours. Upload a ZIP file containing images to start!
Features
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1-14b-lora-trainer" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"data": "",
"trigger_word": "p3r5on",
"steps": 2000,
"learning_rate": 0.0001,
"lora_rank": 32
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
Parameter | Type | Required | Default | Range | Description |
---|---|---|---|---|---|
data | string | Yes | - | - | To train a WAN Lora, you need at least 10 face images to achieve good results.you can check out our default image dataset. |
trigger_word | string | No | p3r5on | - | The phrase that will trigger the model to generate an video. |
steps | integer | No | 2000 | 1000 ~ 4000 | Number of steps to train the LoRA on. |
learning_rate | number | No | 0.0001 | 0.00000 ~ 1.00000 | |
lora_rank | integer | No | 32 | 1 ~ 64 |
Response Parameters
Parameter | Type | Description |
---|---|---|
code | integer | HTTP status code (e.g., 200 for success) |
message | string | Status message (e.g., “success”) |
data.id | string | Unique identifier for the prediction, Task Id |
data.model | string | Model ID used for the prediction |
data.outputs | array | Array of URLs to the generated content (empty when status is not completed ) |
data.urls | object | Object containing related API endpoints |
data.urls.get | string | URL to retrieve the prediction result |
data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
data.status | string | Status of the task: created , processing , completed , or failed |
data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
data.error | string | Error message (empty if no error occurred) |
data.timings | object | Object containing timing details |
data.timings.inference | integer | Inference time in milliseconds |
Result Query Parameters
Result Request Parameters
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
id | string | Yes | - | Task ID |
Result Response Parameters
Parameter | Type | Description |
---|---|---|
code | integer | HTTP status code (e.g., 200 for success) |
message | string | Status message (e.g., “success”) |
data | object | The prediction data object containing all details |
data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
data.model | string | Model ID used for the prediction |
data.outputs | array | Array of URLs to the generated content (empty when status is not completed ) |
data.urls | object | Object containing related API endpoints |
data.urls.get | string | URL to retrieve the prediction result |
data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
data.status | string | Status of the task: created , processing , completed , or failed |
data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
data.error | string | Error message (empty if no error occurred) |
data.timings | object | Object containing timing details |
data.timings.inference | integer | Inference time in milliseconds |