Browse ModelsWavespeed AIWan 2.1 V2V 720p LoRA Ultra Fast

Wan 2.1 V2V 720p LoRA Ultra Fast

Wan 2.1 V2V 720p LoRA Ultra Fast

Playground

Try it on WavespeedAI!

Wan 2.1 V2V 720p LoRA Ultra-Fast converts videos to 720p with custom LoRA support and lets you generate unlimited AI videos. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

Wan 2.1 V2V 720p LoRA Ultra Fast — wavespeed-ai/wan-2.1/v2v-720p-lora-ultra-fast

Wan 2.1 V2V 720p LoRA Ultra Fast is a speed-optimized video-to-video model that transforms an input video using a text prompt while preserving the original motion and timing. Upload a source video, describe the desired style or changes, and tune strength to balance between “keep the original” and “apply the edit.” It supports up to 3 LoRAs for consistent styling, character look, or branded aesthetics—now with faster turnaround for rapid iteration at 720p.

Key capabilities

  • Ultra-fast video-to-video transformation anchored to an input video (720p output)
  • Prompt-guided edits while keeping motion continuity and pacing
  • Strength control to balance preservation vs. transformation
  • LoRA support (up to 3) for stable style/identity steering across clips
  • Fine motion behavior tuning via flow_shift

Use cases

  • Rapid 720p V2V restyling for social, ads, and creative iteration
  • Apply a consistent “house style” across multiple clips using LoRAs
  • Upgrade mood and color grade (cinematic, warm window light, neon, noir)
  • Brand-safe refresh: keep composition and timing, update textures/colors/details
  • Quick A/B testing by changing prompts, LoRAs, or seed

Pricing

DurationPrice per video
5s$0.225
10s$0.3375

Inputs

  • video (required): source video to transform
  • prompt (required): what to change and how the result should look
  • negative_prompt (optional): what to avoid (artifacts, jitter, unwanted elements)
  • loras (optional): up to 3 LoRA items for style/identity steering

Parameters

  • num_inference_steps: sampling steps
  • duration: output duration (seconds)
  • strength: how strongly to transform the input video (lower = preserve more; higher = change more)
  • guidance_scale: prompt adherence strength
  • flow_shift: motion/flow behavior tuning
  • seed: random seed (-1 for random; fixed for reproducible results)

LoRA (up to 3 items):

  • loras: list of LoRA entries (max 3)

    • path: owner/model-name or a direct .safetensors URL
    • scale: LoRA strength

Prompting guide (V2V + LoRA)

A reliable structure is “preserve + edit + style”:

Template: Keep the original motion and timing. Apply [style/look] and adjust [lighting/colors/textures]. Keep faces natural and stable. Avoid flicker, warping, and jitter.

Example prompts

  • Keep the original motion and composition. Apply a warm, cozy studio look with soft window light, visible dust particles, gentle film grain, and natural skin tones.
  • Preserve camera motion and timing. Restyle the clip into a flat-color illustration look while keeping clean edges and stable shading.
  • Keep the scene and movement. Shift the color grade to golden hour, add subtle bloom and soft shadows, maintain realism.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1/v2v-720p-lora-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "loras": [
        {
            "path": "motimalu/wan-flat-color-v2",
            "scale": 1
        }
    ],
    "num_inference_steps": 30,
    "duration": 5,
    "strength": 0.9,
    "guidance_scale": 5,
    "flow_shift": 3,
    "seed": -1
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
videostringYes-The video for generating the output.
promptstringYes-
lorasarrayNomax 3 itemsList of LoRAs to apply (max 3).
loras[].pathstringYes-Path to the LoRA model
loras[].scalefloatYes-0.0 ~ 4.0Scale of the LoRA model
negative_promptstringNo-The negative prompt for the generation.
num_inference_stepsintegerNo301 ~ 40The number of inference steps to perform.
durationintegerNo55 ~ 10The duration of the generated media in seconds.
strengthnumberNo0.90.10 ~ 1.00
guidance_scalenumberNo50.00 ~ 20.00The guidance scale to use for the generation.
flow_shiftnumberNo31.0 ~ 10.0The shift value for the timestep schedule for flow matching.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.