Wan 2.1 V2V 720p LoRA Ultra Fast
Playground
Try it on WavespeedAI!Wan 2.1 V2V 720p LoRA Ultra-Fast converts videos to 720p with custom LoRA support and lets you generate unlimited AI videos. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.
Features
Wan 2.1 V2V 720p LoRA Ultra Fast — wavespeed-ai/wan-2.1/v2v-720p-lora-ultra-fast
Wan 2.1 V2V 720p LoRA Ultra Fast is a speed-optimized video-to-video model that transforms an input video using a text prompt while preserving the original motion and timing. Upload a source video, describe the desired style or changes, and tune strength to balance between “keep the original” and “apply the edit.” It supports up to 3 LoRAs for consistent styling, character look, or branded aesthetics—now with faster turnaround for rapid iteration at 720p.
Key capabilities
- Ultra-fast video-to-video transformation anchored to an input video (720p output)
- Prompt-guided edits while keeping motion continuity and pacing
- Strength control to balance preservation vs. transformation
- LoRA support (up to 3) for stable style/identity steering across clips
- Fine motion behavior tuning via flow_shift
Use cases
- Rapid 720p V2V restyling for social, ads, and creative iteration
- Apply a consistent “house style” across multiple clips using LoRAs
- Upgrade mood and color grade (cinematic, warm window light, neon, noir)
- Brand-safe refresh: keep composition and timing, update textures/colors/details
- Quick A/B testing by changing prompts, LoRAs, or seed
Pricing
| Duration | Price per video |
|---|---|
| 5s | $0.225 |
| 10s | $0.3375 |
Inputs
- video (required): source video to transform
- prompt (required): what to change and how the result should look
- negative_prompt (optional): what to avoid (artifacts, jitter, unwanted elements)
- loras (optional): up to 3 LoRA items for style/identity steering
Parameters
- num_inference_steps: sampling steps
- duration: output duration (seconds)
- strength: how strongly to transform the input video (lower = preserve more; higher = change more)
- guidance_scale: prompt adherence strength
- flow_shift: motion/flow behavior tuning
- seed: random seed (-1 for random; fixed for reproducible results)
LoRA (up to 3 items):
-
loras: list of LoRA entries (max 3)
- path: owner/model-name or a direct .safetensors URL
- scale: LoRA strength
Prompting guide (V2V + LoRA)
A reliable structure is “preserve + edit + style”:
Template: Keep the original motion and timing. Apply [style/look] and adjust [lighting/colors/textures]. Keep faces natural and stable. Avoid flicker, warping, and jitter.
Example prompts
- Keep the original motion and composition. Apply a warm, cozy studio look with soft window light, visible dust particles, gentle film grain, and natural skin tones.
- Preserve camera motion and timing. Restyle the clip into a flat-color illustration look while keeping clean edges and stable shading.
- Keep the scene and movement. Shift the color grade to golden hour, add subtle bloom and soft shadows, maintain realism.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1/v2v-720p-lora-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"loras": [
{
"path": "motimalu/wan-flat-color-v2",
"scale": 1
}
],
"num_inference_steps": 30,
"duration": 5,
"strength": 0.9,
"guidance_scale": 5,
"flow_shift": 3,
"seed": -1
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| video | string | Yes | - | The video for generating the output. | |
| prompt | string | Yes | - | ||
| loras | array | No | max 3 items | List of LoRAs to apply (max 3). | |
| loras[].path | string | Yes | - | Path to the LoRA model | |
| loras[].scale | float | Yes | - | 0.0 ~ 4.0 | Scale of the LoRA model |
| negative_prompt | string | No | - | The negative prompt for the generation. | |
| num_inference_steps | integer | No | 30 | 1 ~ 40 | The number of inference steps to perform. |
| duration | integer | No | 5 | 5 ~ 10 | The duration of the generated media in seconds. |
| strength | number | No | 0.9 | 0.10 ~ 1.00 | |
| guidance_scale | number | No | 5 | 0.00 ~ 20.00 | The guidance scale to use for the generation. |
| flow_shift | number | No | 3 | 1.0 ~ 10.0 | The shift value for the timestep schedule for flow matching. |
| seed | integer | No | -1 | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | string | Array of URLs to the generated content (empty when status is not completed). |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |