Flux Kontext Dev LoRA
Playground
Try it on WavespeedAI!Fast FLUX.1 Kontext [dev] endpoint with LoRA support for rapid image editing using pre-trained adapters for brand and style. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.
Features
FLUX Kontext Dev LoRA — wavespeed-ai/flux-kontext-dev-lora
FLUX Kontext Dev LoRA is an instruction-based image-to-image editing model with built-in LoRA support. Provide a source image plus a natural-language edit request, and optionally attach up to 3 LoRAs to steer style, subject consistency, or domain-specific aesthetics during the edit.
Key capabilities
- Image-to-image editing from a source image + text instruction
- LoRA-enabled inference: apply up to 3 LoRAs via input parameters
- Works for both local edits (specific changes) and global transforms (overall look)
- Ideal for batch consistency: reuse the same LoRA set for a stable visual identity
Pricing
$0.03 per image.
Cost per run = num_images × $0.03 Example: num_images = 4 → $0.12
Inputs and outputs
Input:
- One source image (upload or public URL)
- One edit instruction (prompt)
- Optional: up to 3 LoRA items
Output:
- One or more edited images (controlled by num_images)
Parameters
Core:
- prompt: Edit instruction describing what to change and what to preserve
- image: Source image
- width / height: Output resolution
- num_inference_steps: More steps can improve fidelity but increases latency
- guidance_scale: Higher values follow the prompt more strongly; too high may over-edit
- num_images: Number of variations generated per run
- seed: Fixed value for reproducibility; -1 for random
- output_format: jpeg or png
LoRA (up to 3 items):
-
loras: A list of LoRA entries (max 3)
- path: Either owner/model-name or a direct .safetensors URL from the Internet
- scale: LoRA strength (typically start around 0.6–1.0 and adjust)
Prompting guide
Use “preserve + edit + constraints” and let LoRAs drive the look:
Template: Keep [what must stay]. Change [what to edit]. Ensure [constraints]. Apply the LoRA style consistently without changing identity.
Example prompts
- Keep the person’s face, hairstyle, and pose unchanged. Replace the background with a clean studio gradient. Match lighting and shadows.
- Keep the product shape and label layout unchanged. Replace only the label text with “WaveSpeedAI”. Preserve typography perspective and print texture.
- Remove small blemishes and reduce glare on the forehead while keeping natural skin texture and pores.
Best practices
- Use fewer LoRAs when possible; add a second/third only if you need combined effects.
- If results drift or over-style, reduce LoRA scale or guidance_scale and strengthen the preserve clause.
- For consistent batches, keep the same LoRA set and scales, and fix seed when comparing prompt variants.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev-lora" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"num_inference_steps": 28,
"guidance_scale": 2.5,
"num_images": 1,
"seed": -1,
"loras": [],
"output_format": "jpeg",
"enable_base64_output": false,
"enable_sync_mode": false
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| prompt | string | No | - | The positive prompt for the generation. | |
| image | string | No | - | The image to generate an image from. | |
| size | string | No | - | 256 ~ 1536 per dimension | The size of the generated media in pixels (width*height). |
| num_inference_steps | integer | No | 28 | 1 ~ 50 | The number of inference steps to perform. |
| guidance_scale | number | No | 2.5 | 0.0 ~ 20.0 | The guidance scale to use for the generation. |
| num_images | integer | No | 1 | 1 ~ 4 | The number of images to generate. |
| seed | integer | No | -1 | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
| loras | array | No | max 3 items | List of LoRAs to apply (max 3). | |
| loras[].path | string | Yes | - | Path to the LoRA model | |
| loras[].scale | float | Yes | - | 0.0 ~ 4.0 | Scale of the LoRA model |
| output_format | string | No | jpeg | jpeg, png, webp | The format of the output image. |
| enable_base64_output | boolean | No | false | - | If enabled, the output will be encoded into a BASE64 string instead of a URL. This property is only available through the API. |
| enable_sync_mode | boolean | No | false | - | If set to true, the function will wait for the result to be generated and uploaded before returning the response. It allows you to get the result directly in the response. This property is only available through the API. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | string | Array of URLs to the generated content (empty when status is not completed). |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |