Browse ModelsWavespeed AIFlux Kontext Dev LoRA Ultra Fast

Flux Kontext Dev LoRA Ultra Fast

Flux Kontext Dev LoRA Ultra Fast

Playground

Try it on WavespeedAI!

Ultra-fast FLUX.1 Kontext [dev] endpoint with LoRA support for rapid image editing and brand/style adaptation using pre-trained LoRA. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

FLUX Kontext Dev LoRA Ultra Fast — wavespeed-ai/flux-kontext-dev-lora-ultra-fast

FLUX Kontext Dev LoRA Ultra Fast is a low-latency image-to-image editing model that supports LoRA adapters directly in the request. Provide a source image plus a natural-language edit instruction, and optionally attach up to 3 LoRAs to steer style, identity consistency, or domain aesthetics—optimized for rapid iteration and production workflows.

Key capabilities

  • Ultra-fast instruction-based image editing from a single input image
  • LoRA-enabled inference: apply up to 3 LoRAs via input parameters
  • Strong preservation when you explicitly state what must remain unchanged
  • Great for iterative editing: quick refinements across multiple passes with minimal drift

Typical use cases

  • Fast retouching + consistent styling using a “house look” LoRA
  • Batch product edits (color variants, background swaps) with brand LoRAs
  • Text edits on packaging/signage while keeping typography/perspective consistent
  • Rapid A/B testing by switching LoRAs instead of rewriting prompts

Pricing

$0.025 per image.

Cost per run = num_images × $0.025 Example: num_images = 4 → $0.10

Inputs and outputs

Input:

  • One source image (upload or public URL)
  • One edit instruction (prompt)
  • Optional: up to 3 LoRA items

Output:

  • One or more edited images (controlled by num_images)

Parameters

Core:

  • prompt: Edit instruction describing what to change and what to preserve
  • image: Source image
  • width / height: Output resolution
  • num_inference_steps: More steps can improve fidelity but increases latency
  • guidance_scale: Higher values follow the prompt more strongly; too high may over-edit
  • num_images: Number of variations generated per run
  • seed: Fixed value for reproducibility; -1 for random
  • output_format: jpeg or png
  • enable_base64_output: Return BASE64 instead of a URL (API only)
  • enable_sync_mode: Wait for generation and return results directly (API only)

LoRA (up to 3 items):

  • loras: A list of LoRA entries (max 3)

    • path: owner/model-name or a direct .safetensors URL
    • scale: LoRA strength (start around 0.6–1.0 and adjust)

Prompting guide

Use a clear “preserve + edit + constraints” structure and let LoRAs control the look:

Template: Keep [what must stay]. Change [what to edit]. Ensure [constraints]. Apply LoRA style consistently without altering identity.

Example prompts

  • Keep the person’s face, hairstyle, and pose unchanged. Replace the background with a clean studio backdrop. Match lighting direction and shadow softness.
  • Keep the product shape and label layout unchanged. Replace only the label text with “WaveSpeedAI”, preserving font style, size, and perspective.
  • Remove the background clutter and keep the main subject sharp. Preserve natural skin texture while reducing shine.

Best practices

  • Start with one LoRA first; add a second/third only when needed.
  • If the output is over-stylized, reduce LoRA scale and/or guidance_scale.
  • For consistent batches, reuse the same LoRA set + scales and fix seed for comparisons.
  • Match width/height to the original aspect ratio to avoid distortions.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev-lora-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "num_inference_steps": 28,
    "guidance_scale": 2.5,
    "num_images": 1,
    "seed": -1,
    "loras": [],
    "output_format": "jpeg",
    "enable_base64_output": false,
    "enable_sync_mode": false
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
promptstringYes-The positive prompt for the generation.
imagestringNo-The image to generate an image from.
sizestringNo-256 ~ 1536 per dimensionThe size of the generated media in pixels (width*height).
num_inference_stepsintegerNo281 ~ 50The number of inference steps to perform.
guidance_scalenumberNo2.50.0 ~ 20.0The guidance scale to use for the generation.
num_imagesintegerNo11 ~ 4The number of images to generate.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.
lorasarrayNomax 3 itemsList of LoRAs to apply (max 3).
loras[].pathstringYes-Path to the LoRA model
loras[].scalefloatYes-0.0 ~ 4.0Scale of the LoRA model
output_formatstringNojpegjpeg, png, webpThe format of the output image.
enable_base64_outputbooleanNofalse-If enabled, the output will be encoded into a BASE64 string instead of a URL. This property is only available through the API.
enable_sync_modebooleanNofalse-If set to true, the function will wait for the result to be generated and uploaded before returning the response. It allows you to get the result directly in the response. This property is only available through the API.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.