Bria Fibo Edit
Playground
Try it on WavespeedAI!FIBO is an open-source JSON-native image-to-image model that maps intent to structured controls for precise enterprise image generation. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.
Features
Bria FIBO Edit
Bria FIBO Edit is a powerful image editing model that transforms images based on text prompts. Upload your images, describe the changes you want, and optionally provide a mask to target specific areas — the model applies intelligent edits while preserving the overall composition and quality.
Why Choose This?
-
Text-guided editing Describe edits in natural language — change objects, modify styles, transform products, and more.
-
Mask support Optionally provide a mask image to target specific areas for precise, localized edits.
-
Multi-image input Upload multiple reference images for context-aware editing.
-
Negative prompt support Specify what to avoid in the output for better control over results.
-
Structured prompts Advanced prompt formatting for complex editing instructions.
Parameters
| Parameter | Required | Description |
|---|---|---|
| prompt | Yes | Text description of the desired edit |
| images | Yes | Source images to edit (can add multiple) |
| mask_image | No | Mask image to target specific areas for editing |
| negative_prompt | No | Describe what to avoid in the output |
| structured_prompt | No | Advanced structured prompt for complex edits |
| seed | No | Random seed for reproducibility (-1 for random) |
How to Use
- Write your prompt — describe the edit you want (e.g., “Product becomes perfume”, “Change background to beach”).
- Upload images — add source images using ”+ Add Item” button.
- Add mask (optional) — upload a mask to target specific areas.
- Add negative prompt (optional) — specify what to avoid.
- Set seed — use -1 for random, or specify a number for reproducibility.
- Run — submit and download the edited image.
Best Use Cases
- Product Transformation — Change product types while maintaining composition.
- Object Replacement — Swap objects in images with text instructions.
- Style Editing — Modify visual styles, colors, or aesthetics.
- Background Changes — Transform backgrounds while preserving subjects.
- Creative Retouching — Apply artistic edits with natural language.
Pro Tips
- Be specific in your prompt — clearly describe what should change.
- Use mask images for precise control over which areas to edit.
- Use negative prompts to avoid unwanted elements in the output.
- Start with simple edits to understand how the model interprets prompts.
- Use the same seed to compare different prompts on the same image.
Notes
- Multiple images can be uploaded for context-aware editing.
- Mask image should be black and white — white areas will be edited.
- For best results, use high-quality source images.
Related Models
- Qwen Image Edit 2511 — Precise image editing with bilingual text support.
- Qwen Image Edit Plus — Enhanced editing with dual-mode and text editing.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/bria/image-3.2" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"seed": -1,
"enable_sync_mode": false,
"enable_base64_output": false
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| prompt | string | No | - | Text prompt for image generation | |
| images | array | Yes | [] | 1 ~ 1 items | Required. The source image to be edited. Publicly available URL or Base64-encoded. Accepted formats: JPEG, JPG, PNG, WEBP. Must contain exactly one item. |
| mask_image | string | No | - | The URL of the mask image to generate an image from. | |
| negative_prompt | string | No | - | The negative prompt for the generation. | |
| structured_prompt | string | No | - | - | Structured prompt (JSON string). Use a structured_prompt from a previous generation's response or the /v2/structured_prompt/generate endpoint for precise refinement. |
| seed | integer | No | -1 | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
| enable_sync_mode | boolean | No | false | - | If set to true, the function will wait for the result to be generated and uploaded before returning the response. It allows you to get the result directly in the response. This property is only available through the API. |
| enable_base64_output | boolean | No | false | - | If enabled, the output will be encoded into a BASE64 string instead of a URL. This property is only available through the API. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | string | Array of URLs to the generated content (empty when status is not completed). |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |