Kwaivgi Kling Image V3 Edit
Playground
Try it on WavespeedAI!Kling V3 Edit is an AI model for editing and transforming images via text prompts, enabling precise modifications with natural-language instructions. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.
Features
Kling Image V3 Edit
Kling Image V3 Edit is Kuaishou’s image editing model that transforms existing images based on text instructions. Upload a reference image and describe the changes you want — the model applies edits while preserving the original style, structure, and identity. Supports flexible aspect ratios, resolution options, and batch generation.
Why Choose This?
-
Text-guided editing Describe changes in natural language — no manual masking or layer editing required.
-
Style preservation Maintains the original image’s composition, lighting, and aesthetic while applying your edits.
-
Flexible aspect ratios Multiple options including 1:1, 3:4, 4:3, 9:16, 16:9 and more to fit any use case.
-
Resolution control Choose output resolution (1k and above) based on your quality and speed requirements.
-
Batch generation Generate multiple variations in a single request for rapid iteration and comparison.
-
Prompt Enhancer Built-in tool to automatically improve your edit descriptions for better results.
Parameters
| Parameter | Required | Description |
|---|---|---|
| prompt | Yes | Text description of the desired edit |
| image | Yes | Reference image to edit (URL or upload) |
| aspect_ratio | No | Output aspect ratio (default: 3:4) |
| resolution | No | Output resolution (default: 1k) |
| num_images | No | Number of images to generate (default: 1) |
| output_format | No | Output format: png or jpeg (default: png) |
How to Use
- Upload your image — provide the reference image you want to edit.
- Write your prompt — describe the changes you want (e.g., “Change the jacket to red leather”).
- Choose aspect ratio — select the output format that fits your use case.
- Set resolution — choose 1k for speed or higher for more detail.
- Set num_images — generate multiple variations if needed.
- Run — submit and download your edited images.
Pricing
| Images | Cost |
|---|---|
| 1 | $0.028 |
| 2 | $0.056 |
| 4 | $0.112 |
| 10 | $0.280 |
Billing Rules
- Rate: $0.028 per image
- Total cost = num_images × $0.028
Best Use Cases
- Fashion & E-commerce — Change clothing colors, styles, or patterns on product images.
- Creative Iteration — Explore variations of a concept without starting from scratch.
- Marketing & Ads — Adapt visuals for different campaigns while maintaining brand consistency.
- Portrait Editing — Adjust styling, backgrounds, or accessories in portrait photos.
- Content Repurposing — Transform existing images for new contexts or platforms.
Pro Tips
- Be specific about what should change and what should stay the same.
- Use the Prompt Enhancer to refine vague instructions into detailed edit commands.
- Generate multiple images (num_images > 1) to explore different interpretations of your edit.
- Higher quality source images yield better editing results.
- Use png format when you need lossless quality output.
Notes
- Both prompt and image are required fields.
- Ensure uploaded image URLs are publicly accessible.
- Higher resolution may slightly increase processing time.
Related Models
- Kling Image V3 Text-to-Image — Generate images from text prompts.
- Kling Image O3 Text-to-Image — Next-generation O3 architecture for text-to-image.
- Kling Video O3 Pro Image-to-Video — Animate edited images into video.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/kwaivgi/kling-image-v3/edit" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"aspect_ratio": "16:9",
"resolution": "1k",
"num_images": 1,
"output_format": "png"
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| prompt | string | Yes | - | Text prompt for image generation. | |
| image | string | Yes | - | Reference image for image-to-image generation. | |
| aspect_ratio | string | No | 16:9 | 16:9, 9:16, 1:1, 4:3, 3:4, 3:2, 2:3, 21:9 | Aspect ratio of the generated image. |
| resolution | string | No | 1k | 1k, 2k | Image generation resolution. |
| num_images | integer | No | 1 | 1 ~ 9 | Number of images to generate. |
| output_format | string | No | png | png, jpeg, webp | Output image format. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | string | Array of URLs to the generated images. |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |