Browse ModelsWavespeed AIWan 2.1 T2V 480p LoRA Ultra Fast

Wan 2.1 T2V 480p LoRA Ultra Fast

Wan 2.1 T2V 480p LoRA Ultra Fast

Playground

Try it on WavespeedAI!

WAN 2.1 T2V 480p delivers ultra-fast text-to-video generation with custom LoRA support for unlimited 480p AI videos. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

Wan 2.1 T2V 480p LoRA Ultra Fast — wavespeed-ai/wan-2.1/t2v-480p-lora-ultra-fast

Wan 2.1 T2V 480p LoRA Ultra Fast is a low-latency text-to-video model designed for rapid iteration. It generates short 480p clips from a single prompt, and supports adding LoRAs to steer style, characters, or motion patterns while keeping throughput high.

Key capabilities

  • Text-to-video generation at 480p
  • Ultra-fast inference for quick previews and batch exploration
  • LoRA support for style/character control (up to 3 LoRAs per run)
  • Prompt-driven motion, staging, and shot direction
  • Works well for storyboard drafts, social content, and concept tests

Use cases

  • Fast storyboard and pre-vis from a director-style prompt
  • Stylized “template clips” using LoRAs (brand look, character identity, anime/toy/film looks)
  • Social content ideation: generate 10–20 variations quickly, pick the best, upscale later
  • LoRA-driven series: consistent visual language across multiple clips for campaigns

Pricing

OutputDurationPrice per runEffective price per second
480p T2V (LoRA)5s$0.125$0.025/s
480p T2V (LoRA)10s$0.188$0.0188/s

Inputs

  • prompt (required): describe subject, action, scene, camera, and style

  • negative_prompt (optional): reduce blur, jitter, distortions, low-quality artifacts

  • loras (optional): up to 3 LoRAs, each with:

    • path: owner/model-name or a direct .safetensors URL
    • scale: LoRA strength (commonly around 0.6–1.0 to start)

Parameters

  • duration: clip length (commonly 5s or 10s)
  • size: output size preset (e.g., 832×480)
  • num_inference_steps: more steps can improve stability/detail at the cost of speed
  • guidance_scale: higher values follow the prompt more strongly (can reduce natural motion if too high)
  • flow_shift: motion behavior tuning (useful for more/less dynamic motion)
  • seed: set for reproducible results (-1 for random)

Prompting tips (T2V)

  • Write like a shot list: subject + action + environment + camera + style
  • Keep motion explicit: “slow pan left”, “subtle head turn”, “hands gesture while talking”
  • For multi-panel or UI-like scenes (e.g., a video call), specify layout and per-panel actions clearly
  • If using LoRAs, keep the base prompt simpler and let the LoRA carry most of the style signal

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1/t2v-480p-lora-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "loras": [
        {
            "path": "Remade-AI/Zoom-Call",
            "scale": 1
        }
    ],
    "size": "832*480",
    "num_inference_steps": 30,
    "duration": 5,
    "guidance_scale": 5,
    "flow_shift": 3,
    "seed": -1
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
promptstringYes-The positive prompt for the generation.
negative_promptstringNo-The negative prompt for the generation.
lorasarrayNomax 3 itemsList of LoRAs to apply (max 3).
loras[].pathstringYes-Path to the LoRA model
loras[].scalefloatYes-0.0 ~ 4.0Scale of the LoRA model
sizestringNo832*480832*480, 480*832The size of the generated media in pixels (width*height).
num_inference_stepsintegerNo301 ~ 40The number of inference steps to perform.
durationintegerNo55 ~ 10The duration of the generated media in seconds.
guidance_scalenumberNo50.00 ~ 20.00The guidance scale to use for the generation.
flow_shiftnumberNo31.0 ~ 10.0The shift value for the timestep schedule for flow matching.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.