Browse ModelsWavespeed AIWan 2.1 V2V 720p Ultra Fast

Wan 2.1 V2V 720p Ultra Fast

Wan 2.1 V2V 720p Ultra Fast

Playground

Try it on WavespeedAI!

Ultra-fast Wan 2.1 V2V generates unlimited 720P video-to-video conversions and supports custom LoRAs for personalized styles. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

Wan 2.1 V2V 720p Ultra Fast — wavespeed-ai/wan-2.1/v2v-720p-ultra-fast

Wan 2.1 V2V 720p Ultra Fast is a speed-optimized video-to-video model that transforms an input video using a text prompt while preserving the original motion and timing. Upload a source video, describe the desired changes (style, lighting, environment, details), and tune strength to control how closely the output follows the original footage. This variant is the non-LoRA version, built for fast, clean V2V iteration at 720p.

Key capabilities

  • Ultra-fast video-to-video transformation anchored to an input video (720p output)
  • Prompt-guided edits while keeping motion continuity and pacing
  • Strength control to balance preservation vs. transformation
  • Fine motion behavior tuning via flow_shift for smoother motion
  • Efficient for rapid A/B testing with different prompts and seeds

Use cases

  • Rapid 720p V2V restyling for social, ads, and creative iteration
  • Mood and lighting changes (cinematic grade, warm window light, neon, noir)
  • Brand-safe refresh: keep composition and timing, update textures/colors/details
  • Consistent motion preservation when you only need prompt-driven changes
  • Fast iteration before upgrading to higher resolution or LoRA workflows

Pricing

DurationPrice per video
5s$0.225
10s$0.3375

Inputs

  • video (required): source video to transform
  • prompt (required): what to change and how the result should look
  • negative_prompt (optional): what to avoid (artifacts, jitter, unwanted elements)

Parameters

  • num_inference_steps: sampling steps
  • duration: output duration (seconds)
  • strength: how strongly to transform the input video (lower = preserve more; higher = change more)
  • guidance_scale: prompt adherence strength
  • flow_shift: motion/flow behavior tuning
  • seed: random seed (-1 for random; fixed for reproducible results)

Prompting guide (V2V)

A clean structure is “preserve + edit + constraints”:

Template: Keep the original motion and timing. Change [style/lighting/environment/details]. Keep faces stable and natural. Avoid flicker, warping, and jitter.

Example prompts

  • Keep the original motion and composition. Apply a candid, cinematic look with warm sunlight, soft depth of field, and gentle film grain.
  • Preserve timing and camera movement. Restyle the scene into a clean anime look with stable shading and no flicker.
  • Keep the same scene and people. Shift the color grade to golden hour and add subtle bloom while maintaining realistic shadows.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1/v2v-720p-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "num_inference_steps": 30,
    "duration": 5,
    "strength": 0.9,
    "guidance_scale": 5,
    "flow_shift": 3,
    "seed": -1
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
videostringYes-The video for generating the output.
promptstringYes-
negative_promptstringNo-The negative prompt for the generation.
num_inference_stepsintegerNo301 ~ 40The number of inference steps to perform.
durationintegerNo55 ~ 10The duration of the generated media in seconds.
strengthnumberNo0.90.10 ~ 1.00
guidance_scalenumberNo50.00 ~ 20.00The guidance scale to use for the generation.
flow_shiftnumberNo31.0 ~ 10.0The shift value for the timestep schedule for flow matching.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.