Alibaba Wan 2.6 Reference To Video
Playground
Try it on WavespeedAI!Alibaba WAN 2.6 Reference-to-Video turns character, prop, or scene references—single or multi-view—into new video shots with preserved identity, style, and layout plus smooth, coherent motion. Ready-to-use REST inference API, best performance, no cold starts, affordable pricing.
Features
Alibaba / WAN 2.6 — Reference-to-Video (wan2.6-ref2v)
WAN 2.6 Reference-to-Video is Alibaba’s WanXiang 2.6 model for turning example videos + a text prompt into new shots. Provide up to two reference clips and the model learns their style, motion, and framing, then generates a new 5–10s video at up to 1080p.
🚀 Highlights
- Reference-driven motion & style – Mimic camera moves, pacing and composition from your reference videos while following your prompt.
- Up to two reference videos – Blend style from one clip and motion from another, or use different angles of the same scene.
- Cinematic resolutions – Choose from 720p, or 1080p (portrait or landscape).
- Story-aware generation – Works with prompt expansion and multishots to build richer, multi-shot sequences.
- Audio-ready pipeline – Optional audio field for workflows that need motion aligned to external sound.
Output format: MP4 video at the selected size and duration.
🧩 Parameters
-
prompt* Text description of the new scene: characters, actions, environment, camera motion, mood, style, etc.
-
videos* 1–2 reference clips (URLs or uploads). These guide style, camera work, pacing, and motion structure.
-
negative_prompt Things to avoid, e.g. watermark, text, distortion, extra limbs.
-
audio (optional) External audio track for advanced pipelines where timing should loosely follow a given soundtrack. For most use cases you can leave this empty.
-
size One of the following resolution presets:
- 1280×720 or 720×1280 → 720p
- 1920×1080 or 1080×1920 → 1080p
-
duration Video length: 5 s or 10 s.
-
shot_type
- single – Single-shot clip.
- multi – When combined with enable_prompt_expansion, WAN 2.6 can break your idea into multiple shots of the same scene.
-
enable_prompt_expansion If enabled, Alibaba’s prompt optimizer expands short prompts into a richer internal script before generation.
-
seed Random seed. Set -1 for a new random result each time, or fix to a specific integer for reproducible layout and motion.
💰 Pricing
| Resolution | Sizes (W×H) | 5 s | 10 s |
|---|---|---|---|
| 720p | 1280×720 / 720×1280 | $1.00 | $1.50 |
| 1080p | 1920×1080 / 1080×1920 | $1.50 | $2.25 |
✅ How to Use
-
Prepare 1–2 reference videos
- Clean motion, stable framing, and clear style work best.
- You can use two angles of the same scene, or two stylistically similar clips.
-
Write your prompt
- Describe what should happen in the new video, not just what’s in the references.
- Example: “Cyberpunk alley at night, hero walking toward camera, slow dolly-in, neon reflections on wet ground, cinematic color grading.”
-
(Optional) Add a negative_prompt
- Keep it short and focused: watermark, text, logo, extra limbs, low resolution.
-
Choose size and duration
- 720p/1080p according to your platform (Reels, TikTok, YouTube, etc.).
- 5 s for quick shots, 10 s for more complex actions.
-
Configure multishots & prompt expansion
- Turn on enable_prompt_expansion for shorter prompts.
- Enable multishots if you want WAN 2.6 to create a multi-shot sequence.
-
Set seed (optional)
- Use a fixed seed to iterate while keeping composition similar.
-
Run the model and download the generated clip.
💡 Prompt & Reference Tips
-
Keep reference content and prompt aligned – if references show a city night scene, avoid asking for a sunny beach.
-
Use two references when you want to mix:
- video A’s camera & motion + video B’s lighting/style.
-
Mention where you want the model to follow reference closely, e.g.: “Follow reference camera speed and angles, but change character outfit to futuristic armor.”
-
For portrait/vertical social content, select 480×832, 720×1280, or 1080×1920; for YouTube-style landscape, use the corresponding wide resolutions.
More Models to Try
-
vidu/reference-to-video-q2 Vidu’s Q2 reference-to-video model for turning style and motion from example clips into new shots, ideal for anime-style edits, trailers, and storyboards.
-
google/veo3.1/reference-to-video Google Veo 3.1 reference-conditioned video generator, designed for high-fidelity cinematic motion that closely follows your reference footage.
-
kwaivgi/kling-video-o1/reference-to-video Kwaivgi’s Kling Video O1 reference-to-video model, great for copying camera language and pacing from a sample clip while changing characters or scenes.
-
bytedance/seedance-v1-lite/reference-to-video ByteDance SeeDance v1 Lite, a lightweight reference-to-video model for fast, style-consistent generations based on short example videos.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/alibaba/wan-2.6/reference-to-video" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"size": "1280*720",
"duration": 5,
"shot_type": "single",
"enable_prompt_expansion": false,
"seed": -1
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| videos | array | Yes | - | 1 ~ 2 items | Array of URLs to reference videos. |
| prompt | string | Yes | - | The positive prompt for the generation. | |
| negative_prompt | string | No | - | The negative prompt for the generation. | |
| audio | string | No | - | - | Audio URL to guide generation (optional). |
| size | string | No | 1280*720 | 1280*720, 720*1280, 1920*1080, 1080*1920 | The size of the generated media in pixels (width*height). |
| duration | integer | No | 5 | 5, 10 | The duration of the generated media in seconds. |
| shot_type | string | No | single | single, multi | The type of shots to generate. |
| enable_prompt_expansion | boolean | No | false | - | If set to true, the prompt optimizer will be enabled. |
| seed | integer | No | -1 | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | object | Array of URLs to the generated content (empty when status is not completed). |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |