WaveSpeedAI APIAlibabaAlibaba Wan 2.6 Reference To Video

Alibaba Wan 2.6 Reference To Video

Alibaba Wan 2.6 Reference To Video

Playground

Try it on WavespeedAI!

Alibaba WAN 2.6 Reference-to-Video turns character, prop, or scene references—single or multi-view—into new video shots with preserved identity, style, and layout plus smooth, coherent motion. Ready-to-use REST inference API, best performance, no cold starts, affordable pricing.

Features

Alibaba / WAN 2.6 — Reference-to-Video (wan2.6-ref2v)

WAN 2.6 Reference-to-Video is Alibaba’s WanXiang 2.6 model for turning example videos + a text prompt into new shots. Provide up to two reference clips and the model learns their style, motion, and framing, then generates a new 5–10s video at up to 1080p.


🚀 Highlights

  • Reference-driven motion & style – Mimic camera moves, pacing and composition from your reference videos while following your prompt.
  • Up to two reference videos – Blend style from one clip and motion from another, or use different angles of the same scene.
  • Cinematic resolutions – Choose from 720p, or 1080p (portrait or landscape).
  • Story-aware generation – Works with prompt expansion and multishots to build richer, multi-shot sequences.
  • Audio-ready pipeline – Optional audio field for workflows that need motion aligned to external sound.

Output format: MP4 video at the selected size and duration.


🧩 Parameters

  • prompt* Text description of the new scene: characters, actions, environment, camera motion, mood, style, etc.

  • videos* 1–2 reference clips (URLs or uploads). These guide style, camera work, pacing, and motion structure.

  • negative_prompt Things to avoid, e.g. watermark, text, distortion, extra limbs.

  • audio (optional) External audio track for advanced pipelines where timing should loosely follow a given soundtrack. For most use cases you can leave this empty.

  • size One of the following resolution presets:

    • 1280×720 or 720×1280 → 720p
    • 1920×1080 or 1080×1920 → 1080p
  • duration Video length: 5 s or 10 s.

  • shot_type

    • single – Single-shot clip.
    • multi – When combined with enable_prompt_expansion, WAN 2.6 can break your idea into multiple shots of the same scene.
  • enable_prompt_expansion If enabled, Alibaba’s prompt optimizer expands short prompts into a richer internal script before generation.

  • seed Random seed. Set -1 for a new random result each time, or fix to a specific integer for reproducible layout and motion.


💰 Pricing

ResolutionSizes (W×H)5 s10 s
720p1280×720 / 720×1280$1.00$1.50
1080p1920×1080 / 1080×1920$1.50$2.25

✅ How to Use

  1. Prepare 1–2 reference videos

    • Clean motion, stable framing, and clear style work best.
    • You can use two angles of the same scene, or two stylistically similar clips.
  2. Write your prompt

    • Describe what should happen in the new video, not just what’s in the references.
    • Example: “Cyberpunk alley at night, hero walking toward camera, slow dolly-in, neon reflections on wet ground, cinematic color grading.”
  3. (Optional) Add a negative_prompt

    • Keep it short and focused: watermark, text, logo, extra limbs, low resolution.
  4. Choose size and duration

    • 720p/1080p according to your platform (Reels, TikTok, YouTube, etc.).
    • 5 s for quick shots, 10 s for more complex actions.
  5. Configure multishots & prompt expansion

    • Turn on enable_prompt_expansion for shorter prompts.
    • Enable multishots if you want WAN 2.6 to create a multi-shot sequence.
  6. Set seed (optional)

    • Use a fixed seed to iterate while keeping composition similar.
  7. Run the model and download the generated clip.


💡 Prompt & Reference Tips

  • Keep reference content and prompt aligned – if references show a city night scene, avoid asking for a sunny beach.

  • Use two references when you want to mix:

    • video A’s camera & motion + video B’s lighting/style.
  • Mention where you want the model to follow reference closely, e.g.: “Follow reference camera speed and angles, but change character outfit to futuristic armor.”

  • For portrait/vertical social content, select 480×832, 720×1280, or 1080×1920; for YouTube-style landscape, use the corresponding wide resolutions.


More Models to Try

  • vidu/reference-to-video-q2 Vidu’s Q2 reference-to-video model for turning style and motion from example clips into new shots, ideal for anime-style edits, trailers, and storyboards.

  • google/veo3.1/reference-to-video Google Veo 3.1 reference-conditioned video generator, designed for high-fidelity cinematic motion that closely follows your reference footage.

  • kwaivgi/kling-video-o1/reference-to-video Kwaivgi’s Kling Video O1 reference-to-video model, great for copying camera language and pacing from a sample clip while changing characters or scenes.

  • bytedance/seedance-v1-lite/reference-to-video ByteDance SeeDance v1 Lite, a lightweight reference-to-video model for fast, style-consistent generations based on short example videos.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/alibaba/wan-2.6/reference-to-video" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "size": "1280*720",
    "duration": 5,
    "shot_type": "single",
    "enable_prompt_expansion": false,
    "seed": -1
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
videosarrayYes-1 ~ 2 itemsArray of URLs to reference videos.
promptstringYes-The positive prompt for the generation.
negative_promptstringNo-The negative prompt for the generation.
audiostringNo--Audio URL to guide generation (optional).
sizestringNo1280*7201280*720, 720*1280, 1920*1080, 1080*1920The size of the generated media in pixels (width*height).
durationintegerNo55, 10The duration of the generated media in seconds.
shot_typestringNosinglesingle, multiThe type of shots to generate.
enable_prompt_expansionbooleanNofalse-If set to true, the prompt optimizer will be enabled.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsobjectArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.