Wan 2.1 V2V 480p

Wan 2.1 V2V 480p

Playground

Try it on WavespeedAI!

WAN 2.1 V2V (video-to-video) converts source clips into unlimited AI-generated 480p videos for scalable content creation. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

Wan 2.1 V2V 480p — wavespeed-ai/wan-2.1/v2v-480p

Wan 2.1 V2V 480p is a video-to-video model for prompt-guided transformations while preserving the original motion and timing of an input clip. Upload a source video, describe the desired changes (style, lighting, atmosphere, details), and tune strength to control how closely the output follows the original footage. This 480p variant is ideal for fast, low-cost iteration before upgrading to 720p or LoRA workflows.

Key capabilities

  • Video-to-video transformation anchored to an input video (480p output)
  • Preserves motion continuity and pacing from the original clip
  • Prompt-guided edits for style, lighting, mood, and scene details
  • Strength control to balance “keep original” vs. “transform”
  • Motion behavior tuning via flow_shift for smoother motion

Use cases

  • Low-cost V2V restyling for rapid iteration and ideation
  • Mood/lighting changes (cinematic grade, warm indoor, neon night) without retiming
  • Social clip variations from the same base footage
  • Draft previews before running higher resolution versions
  • Generating multiple takes quickly by changing prompt or seed

Pricing

DurationPrice per video
5s$0.20
10s$0.30

Inputs

  • video (required): source video to transform
  • prompt (required): what to change and how the result should look
  • negative_prompt (optional): what to avoid (artifacts, jitter, unwanted elements)

Parameters

  • num_inference_steps: sampling steps
  • duration: output duration (seconds)
  • strength: how strongly to transform the input video (lower = preserve more; higher = change more)
  • guidance_scale: prompt adherence strength
  • flow_shift: motion/flow behavior tuning
  • seed: random seed (-1 for random; fixed for reproducible results)

Prompting guide (V2V)

Template: Keep the original motion and timing. Change [style/lighting/environment/details]. Keep faces stable and natural. Avoid flicker, warping, and jitter.

Example prompts

  • Keep the original motion and timing. Apply a warm cinematic color grade, soft bloom, subtle film grain, and natural shadows.
  • Preserve composition and camera movement. Restyle into a clean anime look with stable shading and no flicker.
  • Keep the same scene and movement. Add light rain and wet reflections while maintaining realistic skin tones.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/wan-2.1/v2v-480p" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "num_inference_steps": 30,
    "duration": 5,
    "strength": 0.9,
    "guidance_scale": 5,
    "flow_shift": 3,
    "seed": -1
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
videostringYes-The video for generating the output.
promptstringYes-
negative_promptstringNo-The negative prompt for the generation.
num_inference_stepsintegerNo301 ~ 40The number of inference steps to perform.
durationintegerNo55 ~ 10The duration of the generated media in seconds.
strengthnumberNo0.90.10 ~ 1.00
guidance_scalenumberNo50.00 ~ 20.00The guidance scale to use for the generation.
flow_shiftnumberNo31.0 ~ 10.0The shift value for the timestep schedule for flow matching.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.