Browse ModelsWavespeed AIFlux Kontext Dev Ultra Fast

Flux Kontext Dev Ultra Fast

Flux Kontext Dev Ultra Fast

Playground

Try it on WavespeedAI!

FLUX.1 Kontext Dev Ultra-Fast is an open-source image-to-image model that edits images from text prompts with open weights and code. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.

Features

FLUX Kontext Dev Ultra Fast — wavespeed-ai/flux-kontext-dev-ultra-fast

FLUX.1 Kontext Dev Ultra Fast is a low-latency image-to-image editing model optimized for rapid iteration. Provide a source image and a natural-language edit instruction, and it performs targeted or global edits while aiming to preserve the original context when requested—ideal for interactive workflows, batch revisions, and quick creative exploration.

Key capabilities

  • Ultra-fast instruction-based image editing from a single input image
  • Strong preservation when you explicitly specify what must remain unchanged
  • Works well for iterative edits: refine the same image across multiple passes
  • Great for practical edits: color changes, background swaps, text edits, cleanup, and light style transforms

Typical use cases

  • Fast retouching and cleanup (lighting/exposure, minor imperfections)
  • Color/material edits (e.g., product variants)
  • Background replacement for marketing creatives
  • Text replacement on posters, packaging, UI mockups
  • Rapid style experimentation with minimal turnaround time

Pricing

$0.02 per image.

Cost per run = num_images × $0.02 Example: num_images = 4 → $0.08

Inputs and outputs

Input:

  • One source image (upload or public URL)
  • One edit instruction (prompt)

Output:

  • One or more edited images (controlled by num_images)

Parameters

  • prompt: Edit instruction describing what to change and what to keep
  • image: Source image
  • width / height: Output resolution
  • num_inference_steps: More steps can improve fidelity but increases latency
  • guidance_scale: Higher values follow the prompt more strongly; too high may over-edit
  • num_images: Number of variations generated per run
  • seed: Fixed value for reproducibility; -1 for random
  • output_format: jpeg or png
  • enable_base64_output: Return BASE64 instead of a URL (API only)
  • enable_sync_mode: Wait for generation and return results directly (API only)

Prompting guide

Use a clear “preserve + edit + constraints” structure:

Template: Keep [what must stay]. Change [what to edit]. Ensure [constraints]. Match [lighting/shadows/style consistency].

Example prompts

  • Keep the subject’s face and pose unchanged. Replace the background with a clean studio backdrop. Match the lighting and shadow direction.
  • Change the shirt color to navy blue. Keep fabric texture and wrinkles consistent.
  • Replace the label text with “WaveSpeedAI”, keeping the same font style, size, and perspective. Do not modify anything else.
  • Remove the objects on the table. Keep the table surface intact and realistic.
  • Apply a soft cinematic grade with slightly warmer tones, without changing composition or identity.

Best practices

  • Do one change per run for maximum control, then iterate.
  • If the edit drifts, lower guidance_scale and strengthen the preserve clause.
  • Fix seed for reproducible comparisons and stable iteration.
  • Match output width/height to the input aspect ratio to avoid distortion.

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "num_inference_steps": 28,
    "guidance_scale": 2.5,
    "num_images": 1,
    "seed": -1,
    "output_format": "jpeg",
    "enable_base64_output": false,
    "enable_sync_mode": false
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
promptstringYes-The positive prompt for the generation.
imagestringNo-The image to generate an image from.
sizestringNo-256 ~ 1536 per dimensionThe size of the generated media in pixels (width*height).
num_inference_stepsintegerNo281 ~ 50The number of inference steps to perform.
guidance_scalenumberNo2.50.0 ~ 20.0The guidance scale to use for the generation.
num_imagesintegerNo11 ~ 4The number of images to generate.
seedintegerNo-1-1 ~ 2147483647The random seed to use for the generation. -1 means a random seed will be used.
output_formatstringNojpegjpeg, png, webpThe format of the output image.
enable_base64_outputbooleanNofalse-If enabled, the output will be encoded into a BASE64 string instead of a URL. This property is only available through the API.
enable_sync_modebooleanNofalse-If set to true, the function will wait for the result to be generated and uploaded before returning the response. It allows you to get the result directly in the response. This property is only available through the API.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsstringArray of URLs to the generated content (empty when status is not completed).
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.