Flux Kontext Dev Multi Ultra Fast
Playground
Try it on WavespeedAI!Experimental FLUX.1 Kontext [dev] - Multi-Ultra-Fast endpoint with native multi-image handling for batch and multi-view inputs. Ready-to-use REST inference API, best performance, no coldstarts, affordable pricing.
Features
FLUX Kontext Dev Multi Ultra Fast — wavespeed-ai/flux-kontext-dev/multi-ultra-fast
FLUX.1 Kontext Dev Multi Ultra Fast is a low-latency, multi-image editing model designed for fast, instruction-based image editing with richer context. Provide up to 4 reference images plus a text instruction, and the model performs controlled edits while using the references to improve consistency across identity, style, and scene—optimized for rapid iteration and production workflows.
Key capabilities
- Ultra-fast multi-image contextual editing with up to 4 reference images
- Stronger consistency by grounding edits in multiple references (identity, outfit, style, lighting, background)
- Supports both local edits and global transformations
- Ideal for iterative workflows: quick refinements with minimal drift
Typical use cases
- Multi-reference character consistency for portraits and creatives
- Product/branding edits using multiple references (logo + label + lighting + packaging)
- Background swaps with better subject matching (lighting, shadows, perspective)
- Text edits that must follow reference typography and layout
- Rapid A/B iteration for marketing assets and creative variations
Pricing
$0.025 per generation.
If you generate multiple outputs in one run, total cost = num_images × $0.025 Example: num_images = 4 → $0.10
Inputs and outputs
Input:
- Up to 4 reference images (upload or public URLs)
- One edit instruction (prompt)
Output:
- One or more edited images (controlled by num_images)
Parameters
- prompt: Edit instruction describing what to change and what to preserve
- images: Up to 4 reference images
- width / height: Output resolution
- num_inference_steps: More steps can improve fidelity but increases latency
- guidance_scale: Higher values follow the prompt more strongly; too high may over-edit
- num_images: Number of variations generated per run
- seed: Fixed value for reproducibility; -1 for random
- output_format: jpeg or png
- enable_base64_output: Return BASE64 instead of a URL (API only)
- enable_sync_mode: Wait for generation and return results directly (API only)
Prompting guide
Assign clear roles to references to avoid conflicts:
Template: Use reference 1 for [identity]. Use reference 2 for [outfit/material]. Use reference 3 for [style/lighting]. Use reference 4 for [background/scene]. Keep [must-preserve]. Change [edit request]. Match [lighting/shadows/perspective].
Example prompts
- Use reference 1 for face identity and reference 2 for hairstyle. Keep the pose from the base image. Replace the background with a clean studio setup and match shadow direction.
- Use reference 1 for the product shape and reference 2 for the label design. Replace the label text with “WaveSpeedAI”, keeping font style, perspective, and print texture consistent.
- Use reference 3 as the style guide (soft illustration look) and reference 4 for lighting mood (sunset). Preserve identity from reference 1 and keep composition unchanged.
Best practices
- Use high-quality references with clear subjects and minimal occlusion.
- Give each reference a purpose (identity vs. style vs. scene) for more reliable results.
- Iterate with one change per run for tighter control.
- Fix seed for stable comparisons across prompt variants.
Authentication
For authentication details, please refer to the Authentication Guide.
API Endpoints
Submit Task & Query Result
# Submit the task
curl --location --request POST "https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev/multi-ultra-fast" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
"num_inference_steps": 28,
"guidance_scale": 2.5,
"num_images": 1,
"seed": -1,
"output_format": "jpeg",
"enable_base64_output": false,
"enable_sync_mode": false
}'
# Get the result
curl --location --request GET "https://api.wavespeed.ai/api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"
Parameters
Task Submission Parameters
Request Parameters
| Parameter | Type | Required | Default | Range | Description |
|---|---|---|---|---|---|
| prompt | string | Yes | - | The positive prompt for the generation. | |
| images | array | No | [] | - | URL of images to use while generating the image. |
| size | string | No | - | 256 ~ 1536 per dimension | The size of the generated media in pixels (width*height). |
| num_inference_steps | integer | No | 28 | 1 ~ 50 | The number of inference steps to perform. |
| guidance_scale | number | No | 2.5 | 1.0 ~ 20.0 | The guidance scale to use for the generation. |
| num_images | integer | No | 1 | 1 ~ 4 | The number of images to generate. |
| seed | integer | No | -1 | -1 ~ 2147483647 | The random seed to use for the generation. -1 means a random seed will be used. |
| output_format | string | No | jpeg | jpeg, png, webp | The format of the output image. |
| enable_base64_output | boolean | No | false | - | If enabled, the output will be encoded into a BASE64 string instead of a URL. This property is only available through the API. |
| enable_sync_mode | boolean | No | false | - | If set to true, the function will wait for the result to be generated and uploaded before returning the response. It allows you to get the result directly in the response. This property is only available through the API. |
Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data.id | string | Unique identifier for the prediction, Task Id |
| data.model | string | Model ID used for the prediction |
| data.outputs | array | Array of URLs to the generated content (empty when status is not completed) |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.has_nsfw_contents | array | Array of boolean values indicating NSFW detection for each output |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |
Result Request Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
| id | string | Yes | - | Task ID |
Result Response Parameters
| Parameter | Type | Description |
|---|---|---|
| code | integer | HTTP status code (e.g., 200 for success) |
| message | string | Status message (e.g., “success”) |
| data | object | The prediction data object containing all details |
| data.id | string | Unique identifier for the prediction, the ID of the prediction to get |
| data.model | string | Model ID used for the prediction |
| data.outputs | string | Array of URLs to the generated content (empty when status is not completed). |
| data.urls | object | Object containing related API endpoints |
| data.urls.get | string | URL to retrieve the prediction result |
| data.status | string | Status of the task: created, processing, completed, or failed |
| data.created_at | string | ISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”) |
| data.error | string | Error message (empty if no error occurred) |
| data.timings | object | Object containing timing details |
| data.timings.inference | integer | Inference time in milliseconds |