WaveSpeedAI APIHunyuan3d V2 Multi View

Hunyuan3d V2 Multi View

Hunyuan3d V2 Multi View

Playground

Try it on WavespeedAI!

Hunyuan3D-V2-Multi-View is a state-of-the-art image-to-3D generative model developed by Tencent and now available on WaveSpeedAI.

Features

Hunyuan3D-V2-Multi-View

Hunyuan3D-2 is an open-source 3D generation model series launched by Tencent. As of March 2025, the latest version is 2.0, supporting the generation of high-fidelity 3D models with high-resolution texture maps through text, image, or sketch inputs.

Technical Highlights

The system adopts a separated process of geometry generation + texture synthesis:

-Geometry Generation (Hunyuan3D-DiT): Based on a flow diffusion model that generates untextured 3D geometric models, with 2.6B parameters, capable of precisely extracting geometric information from input images or text.

  • Texture Synthesis (Hunyuan3D-Paint): Adds high-resolution (4K) textures to geometric models, with 1.3B parameters, supporting multi-view diffusion generation technology to ensure realistic textures and consistent lighting.
  • By decoupling shape and texture generation, it effectively reduces complexity and improves generation quality.

Performance and Efficiency Optimization

  • Fast Generation: Completes model generation in as fast as 30 seconds, with the accelerated version (Hunyuan3D-DiT-v2-0-Fast) shortening inference time by 50% through guidance distillation techniques.
  • Multi-modal Input: Supports various input methods including text descriptions, images, and sketches, compatible with Blender plugins and Gradio applications, lowering the usage threshold.
  • Open Source Model Ecosystem The project has open-sourced 6 models (some simplified versions), covering different scenario needs:

Authentication

For authentication details, please refer to the Authentication Guide.

API Endpoints

Submit Task & Query Result


# Submit the task
curl --location --request POST "https://api.wavespeed.ai//api/v3/wavespeed-ai/hunyuan3d-v2-multi-view" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}" \
--data-raw '{
    "front_image_url": "https://d3gnftk2yhz9lr.wavespeed.ai/media/images/1744448061406038945_mD5ACGR3.jpg",
    "back_image_url": "https://d3gnftk2yhz9lr.wavespeed.ai/media/images/1744448063989972538_psGEBxuq.jpg",
    "left_image_url": "https://d3gnftk2yhz9lr.wavespeed.ai/media/images/1744448066831654669_1hCzuqnj.jpg",
    "num_inference_steps": 50,
    "guidance_scale": 7.5,
    "octree_resolution": 256,
    "textured_mesh": false
}'

# Get the result
curl --location --request GET "https://api.wavespeed.ai//api/v3/predictions/${requestId}/result" \
--header "Authorization: Bearer ${WAVESPEED_API_KEY}"

Parameters

Task Submission Parameters

Request Parameters

ParameterTypeRequiredDefaultRangeDescription
front_image_urlstringYeshttps://d3gnftk2yhz9lr.wavespeed.ai/media/images/1744448061406038945_mD5ACGR3.jpg-URL of image to use while generating the 3D model.
back_image_urlstringYeshttps://d3gnftk2yhz9lr.wavespeed.ai/media/images/1744448063989972538_psGEBxuq.jpg-URL of image to use while generating the 3D model.
left_image_urlstringYeshttps://d3gnftk2yhz9lr.wavespeed.ai/media/images/1744448066831654669_1hCzuqnj.jpg-URL of image to use while generating the 3D model.
seedintegerNo--1 ~ 2147483647The random seed to use for the generation.
num_inference_stepsintegerNo501 ~ 50The number of inference steps to perform.
guidance_scalenumberNo7.50.0 ~ 20.0The guidance scale to use for the generation.
octree_resolutionintegerNo2561 ~ 1024Octree resolution for the model.
textured_meshbooleanNofalse-If set true, textured mesh will be generated and the price charged would be 3 times that of white mesh.

Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
data.idstringUnique identifier for the prediction, Task Id
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds

Result Query Parameters

Result Request Parameters

ParameterTypeRequiredDefaultDescription
idstringYes-Task ID

Result Response Parameters

ParameterTypeDescription
codeintegerHTTP status code (e.g., 200 for success)
messagestringStatus message (e.g., “success”)
dataobjectThe prediction data object containing all details
data.idstringUnique identifier for the prediction, the ID of the prediction to get
data.modelstringModel ID used for the prediction
data.outputsarrayArray of URLs to the generated content (empty when status is not completed)
data.urlsobjectObject containing related API endpoints
data.urls.getstringURL to retrieve the prediction result
data.has_nsfw_contentsarrayArray of boolean values indicating NSFW detection for each output
data.statusstringStatus of the task: created, processing, completed, or failed
data.created_atstringISO timestamp of when the request was created (e.g., “2023-04-01T12:34:56.789Z”)
data.errorstringError message (empty if no error occurred)
data.timingsobjectObject containing timing details
data.timings.inferenceintegerInference time in milliseconds
© 2025 WaveSpeedAI. All rights reserved.