SDKRun a Model from Python

WaveSpeed Python SDK

The WaveSpeed Python SDK provides a convenient way to interact with WaveSpeed AI’s image generation models from your Python applications. This guide will walk you through installation, basic usage, and advanced features.

Installation

Install the wavespeed package using pip:

pip install wavespeed

Basic Usage

Synchronous Image Generation

The simplest way to generate an image is to use the synchronous run method:

from wavespeed import WaveSpeed
 
# Initialize the client with your API key (or set WAVESPEED_API_KEY environment variable)
client = WaveSpeed(api_key="YOUR_API_KEY")
 
# Generate an image and wait for the result
prediction = client.run(
    modelId="wavespeed-ai/flux-dev",
    input={
        "prompt": "A futuristic cityscape with flying cars and neon lights",
        "size": "1024*1024",
        "num_inference_steps": 28,
        "guidance_scale": 5.0,
        "num_images": 1,
        "seed": -1,
        "enable_safety_checker": True
    }
)
 
# Print the generated image URLs
for i, img_url in enumerate(prediction.outputs):
    print(f"Image {i+1}: {img_url}")

Asynchronous Image Generation

For applications that need to avoid blocking the main thread, you can use the asynchronous version:

import asyncio
from wavespeed import WaveSpeed
 
async def generate_image():
    # Initialize the client with your API key
    client = WaveSpeed(api_key="YOUR_API_KEY")
    
    try:
        # Generate an image and wait for the result
        prediction = await client.async_run(
            modelId="wavespeed-ai/flux-dev",
            input={
                "prompt": "A futuristic cityscape with flying cars and neon lights",
                "size": "1024*1024",
                "num_inference_steps": 28,
                "guidance_scale": 5.0,
                "num_images": 1,
                "seed": -1,
                "enable_safety_checker": True
            }
        )
        
        # Print the generated image URLs
        for i, img_url in enumerate(prediction.outputs):
            print(f"Image {i+1}: {img_url}")
    finally:
        # Always close the client when done
        await client.close()
 
# Run the async function
asyncio.run(generate_image())

manually Polling for Completion

If you want to create a prediction without waiting for it to complete, you can use the create method:

from wavespeed import WaveSpeed
 
# Initialize the client with your API key
client = WaveSpeed(api_key="YOUR_API_KEY")
 
# Create a prediction without waiting
prediction = client.create(
    modelId="wavespeed-ai/flux-dev",
    input={
        "prompt": "A futuristic cityscape with flying cars and neon lights",
        "size": "1024*1024",
        "num_inference_steps": 28,
        "guidance_scale": 5.0,
        "num_images": 1,
        "seed": -1,
        "enable_safety_checker": True
    }
)
 
print(f"Prediction created with ID: {prediction.id}")
print(f"Initial status: {prediction.status}")
 
# Instead of waiting, manually poll for completion
import time
 
# Poll for status until completed or failed
while prediction.status not in ["succeeded", "failed"]:
    print(f"Current status: {prediction.status}")
    time.sleep(1)  # Wait for 1 second before checking again
    prediction = prediction.reload()  # Reload the prediction status
 
print(f"Final status: {prediction.status}")
 
# Print the generated image URLs if successful
if prediction.status == "succeeded":
    for i, img_url in enumerate(prediction.outputs):
        print(f"Image {i+1}: {img_url}")
else:
    print(f"Error: {prediction.error}")

Command Line Usage

The wavespeed package also provides command-line functionality for quick image generation.

Basic Image Generation

# Set your API key as an environment variable
export WAVESPEED_API_KEY="your_api_key_here"
 
# Run the example script
python examples/generate_image.py --prompt "A futuristic cityscape with flying cars and neon lights"

Asynchronous Image Generation

# Run the async example script
python examples/async_generate_image.py --prompt "A futuristic cityscape with flying cars and neon lights"

Non-blocking Image Generation

# Create a prediction and poll for status
python examples/create_generate_image.py --prompt "A futuristic cityscape with flying cars and neon lights"

Command Line Options

--prompt TEXT         Text description of the desired image (required)
--strength FLOAT      How much to transform the input image (0.0 to 1.0)
--size WIDTHxHEIGHT   Image dimensions (default: 1024*1024)
--steps INT           Number of inference steps (default: 28)
--guidance FLOAT      How closely to follow the prompt (default: 5.0)
--num-images INT      Number of images to generate (default: 1)
--seed INT            Random seed (-1 for random)
--safety              Enable content safety filtering

API Reference

WaveSpeed Client

WaveSpeed(api_key)

Parameters:

  • api_key (str): Your WaveSpeed API key

Methods

run

run(modelId, input, **kwargs) -> Prediction

Generate an image and wait for the result.

async_run

async_run(modelId, input, **kwargs) -> Prediction

Asynchronously generate an image and wait for the result using non-blocking HTTP requests via Python’s asyncio and aiohttp libraries to make API calls without blocking the event loop.

create

create(modelId, input, **kwargs) -> Prediction

Create a prediction without waiting for it to complete.

async_create

async_create(modelId, input, **kwargs) -> Prediction

Asynchronously create a prediction without waiting for it to complete. Uses non-blocking HTTP requests via Python’s asyncio and aiohttp libraries to make API calls without blocking the event loop.

Prediction Model

The Prediction object contains information about an image generation job:

prediction.id                # Unique ID of the prediction
prediction.model             # Model ID used for the prediction
prediction.status            # Status of the prediction (processing, completed, failed)
prediction.input             # Input parameters used for the prediction
prediction.outputs           # List of output image URLs
prediction.urls.get          # URL to get the prediction status
prediction.has_nsfw_contents # List of booleans indicating if each image has NSFW content
prediction.created_at        # Creation timestamp
prediction.error             # Error message (if any)
prediction.executionTime     # Time taken to execute the prediction in milliseconds

Prediction Methods

prediction.wait() -> Prediction     # Wait for the prediction to complete
prediction.reload() -> Prediction   # Reload the prediction status
 
# Async versions
await prediction.async_wait() -> Prediction    # Wait for completion using non-blocking HTTP requests
await prediction.async_reload() -> Prediction  # Reload status using non-blocking HTTP requests

Environment Variables

The SDK supports the following environment variables:

  • WAVESPEED_API_KEY: Your WaveSpeed API key
  • WAVESPEED_POLL_INTERVAL: Interval in seconds for polling prediction status (default: 1)
  • WAVESPEED_TIMEOUT: Timeout in seconds for API requests (default: 60)

Github Repo

https://github.com/WaveSpeedAI/client-python

License

The WaveSpeed Python SDK is licensed under the MIT License.